Vitamin A and Beta-Carotene


Vitamin A and Beta-Carotene

This page intends to be a space where you can find more information about the scientific studies and research tests proving the benefits from the use of the ingredients present in SOLEIL, this page is only for educational purposes, not expecting to promote our product. SOLEIL is a dietary supplement, that is, it’s not intended to treat, prevent, cure or mitigate any disease or any symptom.
It’s important to mention that discussion, results and conclusions from each study may not be supported by all scientists or no other researcher, sometimes there are opposition to the extension from benefits of that particular ingredient.
Beta-carotene is an antioxidant found in carrots.
Free radicals damage cells through oxidation. Eventually, the damage caused by free radicals can cause several illnesses and as well as contribute to early ageing of skin.

In the text below you can find more information about the scientific studies that serve as background support to the benefits from the Vitamin A and Organic Carrots (as Beta-Carotene) usage.

CLINICAL RESEARCH PUBLICATIONS

Beta-Carotene: an unusual type of lipid antioxidant
ABSTRACT
The mechanism of lipid peroxidation and the manner in which antioxidants function is reviewed. beta-Carotene is a purported anticancer agent, which is believed by some to have antioxidant action of a radical-trapping type. However, definitive experimental support for such action has been lacking. New experiments in vitro show that beta-carotene belongs to a previously unknown class of biological antioxidants. Specifically, it exhibits good radical-trapping antioxidant behavior only at partial pressures of oxygen significantly less than 150 torr, the pressure of oxygen in normal air. Such low oxygen partial pressures are found in most tissues under physiological conditions. At higher oxygen pressures, beta-carotene loses its antioxidant activity and shows an autocatalytic, prooxidant effect, particularly at relatively high concentrations. Similar oxygen-pressure-dependent behavior may be shown by other compounds containing many conjugated double bonds.
Download
Free radical tissue damage: protective role of antioxidant nutrients.
ABSTRACT
Highly reactive molecules called free radicals can cause tissue damage by reacting with polyunsaturated fatty acids in cellular membranes, nucleotides in DNA, and critical sulfhydryl bonds in proteins. Free radicals can originate endogenously from normal metabolic reactions or exogenously as components of tobacco smoke and air pollutants and indirectly through the metabolism of certain solvents, drugs, and pesticides as well as through exposure to radiation. There is some evidence that free radical damage contributes to the etiology of many chronic health problems such as emphysema, cardiovascular and inflammatory diseases, cataracts, and cancer. Defenses against free radical damage include tocopherol (vitamin E), ascorbic acid (vitamin C), beta-carotene, glutathione, uric acid, bilirubin, and several metalloenzymes including glutathione peroxidase (selenium), catalase (iron), and superoxide dismutase (copper, zinc, manganese) and proteins such as ceruloplasmin (copper). The extent of tissue damage is the result of the balance between the free radicals generated and the antioxidant protective defense system. Several dietary micronutrients contribute greatly to the protective system. Based on the growing interest in free radical biology and the lack of effective therapies for many of the chronic diseases, the usefulness of essential, safe nutrients in protecting against the adverse effects of oxidative injury warrants further study.
Download
Vitamins E and C, beta-carotene, and other carotenoids as antioxidants
ABSTRACT
Tocopherols and tocotrienols (vitamin E), ascorbic acid (vitamin C), and the carotenoids react with free radicals, notably peroxyl radicals, and with singlet molecular oxygen (1O2), which is the basis for their function as antioxidants. RRR-alpha-Tocopherol is the major peroxyl radical scavenger in biological lipid phases such as membranes or low-density lipoproteins. Ascorbic acid is present in aqueous compartments (eg, cytosol, plasma, and other body fluids) and can reduce the tocopherol radical; it also has several metabolically important cofactor functions in enzyme reactions, especially hydroxylations. These micronutrients need to be regenerated on oxidation in the biological setting, hence the need for further coupling to nonradical reducing systems such as glutathione-glutathione disulfide, dihydrolipoate-lipoate, or NADPH-NADP+ and NADH-NAD+. Carotenoids, such as beta-carotene, lycopene, and some oxycarotenoids, eg, zeaxanthin and lutein, exert antioxidant functions in lipid phases by quenching 1O2 or free radicals. There are pronounced differences in tissue carotenoid patterns, extending also to the distribution between the all-trans and various cis isomers of the respective carotenoids. Physical quenching leaves the structure intact, so that in this mode the carotenoids do not require a regeneration reaction.
Download